The Underlying Event from Tevatron to LHC

P. Skands (CERN)

Standard Model Benchmarks at the Tevatron and LHC, Fermilab, Nov 19-20, 2010

Min-Bias and UE

Minimum-Bias

High-Statistics reference laboratory

Study fragmentation:

Compare to ee!

Study hadron collisions:

Scaling

Soft-QCD

High Multiplicity

Diffraction

...

No hard scale → *all* observables depend significantly on IR physics 10-20% precision is *very good*

Min-Bias and UE

Minimum-Bias

High-Statistics reference laboratory

Study fragmentation:

Compare to ee!

Study hadron collisions:

Scaling

Soft-QCD

High Multiplicity

Diffraction

...

No hard scale → *all* observables depend significantly on IR physics 10-20% precision is *very good*

Underlying Event

Pedestal effect \rightarrow larger than min-bias

Multiple parton interactions \rightarrow multiple (mini)jets

Large fluctuations

Hard scale present, but look at observables that don't (explicitly) involve it 10-20% precision is *very good*

and Multiple Parton-Parton Interactions

JET > 5 GeV

Statistically biases
the selection towards
more central events
with more MPI 1

The assumed shape of the proton affects the give and <UE>/<MB>

< MPI > = 4 / 2 = 2

Dissecting the Pedestal

JET > 5 GeV

Statistically biases
the selection towards
more central events
with more MPI 1

The assumed shape of the proton affects the gise and <UE>/<MB>

< MPI > = 4 / 2 = 2

Possible to do at Tevatron?

Transverse Region Variances

S.D. lower than mean, but more than square root of mean.

Suggests tracks not independently produced (not Poisson distribution).

S.D. provides a additional constraint on generator tunes

Workshop on Multi-Parton Interactions at the LHC 13th September, DESY

Possible to do at Tevatron?

Transverse Region Variances

S.D. lower than mean, but more than square root of mean.

Suggests tracks not independently

Analyzing the Pedestal?

Initial rise & <UE>/<MB> → "average" proton shape

Focus on specific x range (pick jet p_T and y, for given collider energy)

Scan over transverse activity \rightarrow b dependence for that x?

And/or look for abundance of minijets in transverse region

P. Skands

A NEW LOOK?

A REW LOOK!

A REW LOOK!

A REW LOOK?

An Organized View

I. Where is the energy going?

Sum(pT) densities, event shapes, mini-jet rates, energy flow correlations... \approx sensitive to pQCD + pMPI

2. How many tracks is it divided onto?

 N_{tracks} , dN_{tracks}/dp_{T} , Associated track densities, track correlations... \approx sensitive to hadronization + soft MPI

3. What kind of tracks?

Strangeness per track, baryons per track, beam baryon asymmetry, ... s-baryons per s, multi-s states, s-sbar correlations, \approx sensitive to details of hadronization

Can we be more general than thistune-does-this, that-tune-does-that?

Yes

The new automated tuning tools can be used to generate unbiased optimizations for different observable regions

Same parameters → consistent model (not just "best tune")

Critical for this task (take home message):

Need "comparable" observable sets for each region

Example: use different collider energies as our "regions" → test energy scaling Other complementary data sets could be used to test other model aspects

"Energy Scaling of MB Tunes", H. Schulz + PS, in preparation

Used CDF, UA5, and ATLAS data

 $P(N_{ch})$, dN_{ch}/dp_T , $< p_T > (N_{ch})$

Not dN/d(eta) to avoid emphasis on low mult

+ for ATLAS: can even focus on $N_{ch} \ge 6$ separately! Possible to do at Tevatron too?

From 630 GeV to 7 TeV

(Unfortunately, did not have a complete obs set from STAR at 200 GeV)

Reduce model to 3 main parameters:

Starting point = Perugia 0

I. Infrared Regularization Scale

- PARP(82)
- 2. Proton Transverse Mass Distributions

μ PARP(83)

3. Strength of Color Reconnections

CR PARP(78)

Use Professor to do independent optimizations at each energy

Infrared Regularization Scale

Model:
$$p_{\perp 0}^{2}(s) = p_{\perp 0}^{2}(s_{\text{ref}}) \left(\frac{s}{s_{\text{ref}}}\right)^{P_{90}}$$

cf., also, e.g., CMS, studies by R. Field

&

FIG. 8. Values for the cutoff parameter p_{T0} as a function of c.m. energy, as determined from comparisons with the average charged multiplicity. Dashed line, with a logarithmic extrapolation to higher energies, Eq. (38); dotted line, if assumed constant above 900 GeV.

No large deviation from the assumed functional form

(E.g., Tunes A, DW, Perugia-0 use Exp = PARP(90) = 0.25)

Transverse Mass Distribution

Hint of departure from Gaussian (d=2) at lower E_{cm} ?

Interesting to get more independent handles on b distribution + make more use of 200 and 630 GeV data?

Color Reconnection Strength

Model: $P_{\text{keep}} = (1 - \zeta P_{78})^{n_{\text{int}}}$ (energy dependence implicit through <n_{int}>)

Assumption of constant strength not supported by data!

Underscores the need for better physical understanding

The pedestal effect

Gives relation MB → UE, driven by proton shape

Tevatron tunes generally low at 7 TeV

But 20% not spectacular; can probably do better, but

Advocate more systematic approach to tuning & testing:

Factorize: Order observables from IR safe to IR sensitive

Global View: test models on many obs, not just one (duh!)

Tuning Tools: can be used for more than tuning

PS: Perugia 7-TeV prediction still untested: $\langle N \rangle_{pT>0.5,|\eta|<2.5,N\geq4} = 14.45 \pm 1.26$

P. Skands